Factoring Trinomials

Lesson 8-5

Lesson 8-5 Factoring Trinomials: x² + bx + c

Factoring $x^2 + bx + c$: To factor quadratic trinomials of the form $x^2 + bx + c$, find two factors, m and n, whose sum is equal to b and whose product is equal to c. Then write $x^2 + bx + c$ using the pattern ($\chi + m$)($\chi + m$).

b is Negative and c is Positive

A.
$$x^2 - 12x + 27$$

 $(x-3)(x-9)$
Factors of 27 | Sum of Factors

1, 27 | 28 | The "b" term is negative and the "c" term is positive, so both factors have to be negative.

b is Positive and c is Negative

B. $x^2 + 3x - 18$ (x+6)(x-3)

(Since b is positive and c is negative, then one factor must be positive and the other factor must be negative.)

Think: multiply to

get 18 and subtract

to get 3

Factors of -18 Sum of Factors

-1, 18 17

-2, 9 7

-3, 6 3

Lesson 8-5 Factoring Trinomials: $x^2 + bx + c$

Practice:

Factor each trinomial.

1.
$$x^2 + 3x + 2$$

 $(x + 2)(x + 1)$

2.
$$x^2-10x+16$$
 $(x-2)(x-8)$

	Sum of Factors	Middletern
1, 16 2, 8	17	determines the sign.

3.
$$x^2 + 4x - 5$$
 $(x + 5)(x - 1)$

4.
$$x^2 + 11x + 24$$

 $(x + 3)(x + 8)$

	Sum of Factors
1, 24	25
2, 12	14
3,8	11

5.
$$72 + 27a + a^2$$

Rewrite: $a^2 + 27a + 72$
 $(a + 4)(a + 18)$

Lesson 8-5 Factoring Trinomials: x3 + bx + c

b is Negative and c is Negative

C. $x^2 - x - 20$ (x - 5)(x + 4)

(Since *c* is negative, then one factor must be positive and the other factor must be negative. Since b is negative, then the larger factor is negative.)

Sum of Factors
-19
-8
-1

Solve and Equation by Factoring

Always write in standard form Ax+By+C=0

D. Solve $x^2 + 2x = 15$

x2+2x-15=0

Rewrite equation so that it equals zero.

 $(\chi - 3)(\chi + 5) = 0$ Factor

<u>x-3</u>	= 0	OR _	X	+ 5	_= 0
1 7	4. 7			~	م

+ 3	3 +3	5	_5	2
~	= 3	v	= - F	5

The solution is 3, -5.

Factors of 15	Sum of Factors
-1, 15	14
-3, 5	2
·	

E. Solve $x^2 - 20 = x$

 $\times^2 - \times -20 = 0$

Rewrite equation so that it equals zero.

(x-5)(x+4)=0

Factor

$$\frac{x-5}{+5} = 0$$
 OR $\frac{x+4}{+5} = 0$

 $\chi = 5 \qquad \chi = -4$

The solution is $\frac{5}{5}$, -4

Hint. Check by putting the original in [4]. Graph and 8-5 Factoring Trinomials look at x-intercepts!

Lesson 8-5 Factoring Trinomials: $x^2 + bx + c$

Practice:

Factor completely

5.
$$p^2 - 2p - 35$$
 $(p+5)(p-7)$

Solve each equation.

6. Solve
$$x^2 + 7x + 6 = 0$$

$$\frac{(X+1)(X+6)=0}{X+1}=0 \text{ OR } \frac{X+6}{X+6}=0$$

$$\frac{-1}{X}=-1 \qquad X=-6$$
The solution is $\frac{2-1,-6}{3}$.

7. Solve
$$y^2 + 9 = -10y$$

$$y^{2}+10y+9=0$$
 Rewrite
 $(y+9)(y+1)=0$ Factor
 $y+9=0$ OR $y+1=0$
 $y=-9$ $y=-1$

These are the Solutions, the X-intercepts, the Zeros, and the Roots